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Although cancer is characterized by an intratumoral genetic heterogeneity, a totally deranged pH control is a
common feature of most cancer histotypes. Major determinants of aberrant pH gradient in cancer are proton
exchangers and transporters, including V-ATPase, Na+/H+ exchanger (NHE), monocarboxylate transporters
(MCTs) and carbonic anhydrases (CAs). Thanks to the activity of these proton transporters and exchangers,
cancer becomes isolated and/or protected not only from the body reaction against the growing tumor, but also
from the vast majority of drugs that when protonated into the acidic tumor microenvironment do not enter
into cancer cells. Proton transporters and exchangers represent a key feature tumor cells use to survive in the
very hostile microenvironmental conditions that they create and maintain. Detoxifying mechanisms may thus
represent both a key survival option and a selection outcome for cells that behave as unicellular microorganisms
rather than belonging to an organ, compartment or body. It is, in fact, typical of malignant tumors that, after a
clinically measurable yet transient initial response to a therapy, resistant tumor clones emerge and proliferate,
thus bursting a more malignant behavior and rapid tumor progression. This review critically presents the
background of a novel and efficient approach that aims to fight cancer through blocking or inhibiting well
characterized proton exchangers and transporters active in human cancer cells. This article is part of a Special
Issue entitled: Membrane channels and transporters in cancers.

© 2014 Published by Elsevier B.V.
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Most often, tumor cells upregulate glycolysis and grow in a hypoxic
microenvironment. Highly proliferative cancer cells produce a large
amount of H+ generated by glycolysis and glucose utilization, amino
acid metabolism, and ATP hydrolysis, all associated to proton efflux
and extracellular acidification [1]. One interesting hypothesis is that
the hostile microenvironment generated during tumor growth progres-
sively selects cells suited to survive in these adverse conditions.
Uncontrolled growth, lactic and carbonic acid production from tumor
metabolism and low blood and nutrient supply all contribute to a
tumor microenvironment with many molecules that are extremely
toxic for either normal or more differentiated cells. It is therefore
possible that the cells that survive in this unfavorable microenviron-
ment possess the means for avoiding intracellular accumulation of
toxic molecules, including the expression and activation of several
proton extruders [2]. Among proton flux regulators are V-ATPase,
Na+/H+ exchanger (NHE), monocarboxylate transporters (MCTs) and
carbonic anhydrase 9 (CAIX, Table 1). Their activity creates a distur-
bance of pH gradients typical of malignant cells, characterized by a
reversed pH gradient between acidic extracellular and alkaline intracel-
lular compartments. Acidity quickly kills normal or more differentiated
cells, but not tumor cells that are well equipped with proton extruders
thus promoting a transition towards more aggressive hystotypes.
Indeed, proton pumps and transporters efficiently export H+ out of
the cell or sequester H+ inside internal vacuoles, thus avoiding poten-
tially highly cytotoxic acidification of the tumor cell cytosol. In many
tumors, a chronic exposure to acidic pH has been reported to promote
invasiveness, metastatic behavior and resistance to cytotoxic agents
[3–7]. Moreover, some evidence suggests that an abnormal pH may be
involved in important tumor-associated cellular functions, such as
acidic vesicular trafficking, drug resistance, lytic enzyme activation
and aberrant phagocytic activity [1,2]. Detoxifying mechanisms may
thus represent both a key survival option and a feature that progressive-
ly selects individual cells armed to survive to molecular insults. This
makesmalignant cells very similar tomicroorganisms [8]. In fact, proton
pumps, as cellular mechanisms that counteract the accumulation of
toxic agents, are very active in many microbial species [9]. Here, we
Table 1
Proton exchangers and their role in cancer.

Type of pump Cellular localization Function

H+-ATPase Plasma
membrane
and acidic
organelles

Acidification of extracellular
microenvironment
and endolysosomal
compartment

Na+/H+-exchangers (NHE) Plasma
membrane

Alkalinization of cytosol
and acidification
of extracellular
microenvironment

MCT1
(H+/lactate symporter)

Plasma
membrane

Elimination of lactate
from glucose catabolism,
and acidification
of extracellular milieu

Carbonic anhydrase 9 Plasma
membrane

Regulation of intracellular
pH and pH gradients

H+/K+-ATPase Gastric epithelial
cell line

Regulation of
extracellular pH
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propose that an efficient anticancer approach could be to block or inhib-
it mechanisms involved in cell detoxification in order to deprive cancer
cells of a key survival option, hence triggering tumor cell death.
1. Contribution of proton channels and exchangers to cancer
progression and chemoresistance

1.1. V-ATPases

The peculiar anaerobic or aerobic metabolism of glucose by cancer
cells leads to the accumulation of acid byproducts resulting in an acid
milieu that strongly affects tumor cells and their host [10–12]. Low ex-
tracellular/intratumoral pH is a major cause of tumor unresponsiveness
to the vast majority of cytotoxic drugs, mostly because the H+-rich
tumormicroenvironment leads to protonation of the chemotherapeutic
agent causing both its neutralization outside the cells and prevention of
reaching its intracellular targets [10–12]. The prime cause of tumor
microenvironment acidification is secondary to the byproducts of
tumor metabolism, namely protons, coupled with reduced perfusion.
However, this condition progressively selects cells adapted to survive
in the acidic extracellular tumor microenvironment, which is due to
overexpression and activation of membrane-bound pH-regulating
systems that contribute to prevent intracellular acidification. Among
them, vacuolar-typeH+ATPases seem to be involved in the acidification
of tumormicroenvironment [10–12]. VacuolarH+ATPase (V-ATPase) is
a complex multisubunit protein devoted to the transport of protons
from the cytoplasm towards intracellular compartments and from in-
side to outside of the cell through the cytoplasmic membrane [11–13].
V-ATPases are made of a transmembrane subunit, named V0 complex,
devoted to proton transfer and a cytoplasmic portion, named V1 com-
plex, that provides the necessary energy for proton translocation [13].
Because of its role in the regulation of cellular pH homeostasis,
V-ATPase is involved in multiple cellular functions including endocyto-
sis and activation of proteases [10,13], angiogenesis [14], autophagy
[15] and amino acids sensing via interaction with mTOR [16]. Tumor
cells located at the margin of neoplastic masses are often away from
newly formed blood vessels, receiving and inadequate supply of oxygen
and nutrients. Such cells survive and adapt to a highly selective environ-
ment characterized by hypoxic and acidic conditions caused by
increased glycolysis and reduced tissue perfusion [17–19]. Augmented
expression of V-ATPase is considered to be a well-designed compensa-
tory mechanism that in fact confers survival and growth advantages to
cancer cells [17–21]. Among its activities, V-ATPase contributes to
lower extracellular pH (pHe) thus activating extracellular metallopro-
teinases that promote tumor cell survival, motility and invasion,
resulting in enhanced malignancy ability. There is a bulk of evidence
that points out the role of V-ATPase in tumor invasion andmultidrug re-
sistance in breast cancer [22–25], oral squamous cell carcinoma [26–28],
esophageal carcinoma [29], hepatocellular and pancreatic carcinoma
[30,31], lung carcinoma [32], sarcoma [33,34] and solid tumors in
general [35].

Consequently, inhibition of V-ATPase has become a fascinating and
promising strategy to counteract proton metabolism in cancer, which
has been investigated in vitro and in vivo, in both preclinical and clinical
settings. This section will summarize the results obtained so far in the
different areas of investigation.
rs in cancer, Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/
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1.2. Anti-V-ATPase compounds

The number of V-ATPase inhibitors is still rather small but they are
currently being extensively studied to uncover their binding properties
and theirmodeof inhibition [36,37].Most of the knownV-ATPase inhib-
itors are natural compounds of microbial origin such as bafilomycin, the
first specific inhibitor isolated from Streptomyces griseus in the 1980s, or
Concanamycin A isolated from Streptomyces neyagawaensis [36,38].
Archazolid, like bafilomycin A1 or concanamycin, binds to the V0 sub-
unit c of V-ATPase and has also been recently investigated as an anti-
cancer agent in vitro and in vivo [39]. Unfortunately, the use of these
anti-V-ATPase compounds is limited to preclinical models since
V-ATPase is a housekeeping complex widely expressed and active in
all types of cells, and because their potential human utilization is
bound to be extremely toxic [36]. In this context, omeprazole and
other related drugs have sparked great interest among the different
V-ATPase inhibitors. These gastric H+/K+-ATPase inhibitors can inhibit
V-ATPase by binding to subunit A of the nucleotide bindingdomain [40].
An attractive feature of these compounds is that they require acidic
conditions to be converted into the active form, therefore providing
the possibility of tumor selectivity (Fig. 1).
1.3. V-ATPase and acidic tumor pH in autophagy

Autophagy is a homeostatic self-digestivemechanism adopted by all
cells under physiological conditions to maintain the integrity of
organelles and to remove protein aggregates [41]. Cells under stress
conditions use autophagy as a defensemechanism that recycles cytosol-
ic material in order to counteract lack of nutrients or other metabolic
and therapeutic insults. Lysosomes play a fundamental role in the
autophagic process since the content of the autophagosome (autopha-
gic cargo) is degraded after fusionwith acidic lysosomes, thus providing
optimal pH conditions for degradation activity [42]. Indeed, inhibition of
V-ATPase by Bafilomycin A1 is a standard mechanism to block autoph-
agy in the terminal stages [43]. Moreover, some human pathologies
characterized by mutations in V-ATPase subunits are associated with
defective autophagy [44,45]. As it has been shown that in many models
aggressive metastatic cells are characterized by higher levels and/or in-
creased activity of V-ATPase [46,47], it is likely that increased V-ATPase
activity also contributes to the upregulated autophagy characteristic of
metastatic cancers. Moreover, it was reported that treatment with
esomeprazole in melanoma cells inhibits mTOR signaling, stimulates
the formation of autophagosomes, and simultaneously slows down
the autophagic flux, likely via inhibition of lysosome acidification [48].
An alternative mechanism by which proton pump inhibitors (PPI)
may modulate autophagy is by affecting regulatory functions of
V-ATPase without inhibiting its proton pump activity [49]. In fact,
V-ATPase is part of the Regulator complex that regulates mTOR [16].
Since mTOR is a positive regulator of lysosomal biogenesis, it is possible
that PPI affects the interaction of V-ATPase with mTOR. Autophagy has
been reported as an essential mechanism used bymelanoma and breast
carcinoma cells to adapt to chronic acidosis [50,51]. This suggests that
inhibition of autophagy may kill the cancer cells that are chronically
Fig. 1. Chemical representation of the proton pump inhibitor activation by protonation (due to
sulfonemide, and its binding to the proton pump.
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exposed to acidosis. The only available drug tested as autophagy inhib-
itor in clinical trials in cancer patients is the antimalaric compound chlo-
roquine (CQ) [52]. Unfortunately, tumor acidosis has been recently
reported to completely abrogate CQ activity both in vitro and in vivo
due to lack of drug entry into acidic tumor regions [15,53]. Given the
complex role of V-ATPase in both lysosome acidification andmembrane
trafficking, further investigation is required to understand how inhibi-
tion of V-ATPase may modulate autophagy and tumor growth [15,48].
1.4. Studies in murine models

Following the results of in vitro studies, the efficacy andmechanisms
of action of V-ATPase inhibitors have been further substantiated by
in vivo studies involving murine models. In 2004, Luciani et al. evi-
denced that pretreatment with PPI omeprazole greatly increased the
in vitro sensitivity of tumor cell lines to chemotherapeutic agents [54].
Moreover, pretreatment with omeprazole of SCID mice carrying
orthotopic melanoma xenografts resulted in an increased response to
cisplatinwith decreased tumor burden [54]. Another group of investiga-
tors evidenced that RNA interference with subunit ATP6L of V-ATPase
resulted in growth inhibition andmetastatic delay inmurine xenografts
of hepatocellular carcinoma [55]. The antitumor properties of omepra-
zole were further substantiated by another investigation that evaluated
this feature both in vitro and in vivo [56]. In this study, SCID mice
carrying B-cell tumor xenografts were treated with high dose oral
omeprazole or placebo, and the treatment group evidenced significant
tumor delay. This publication pointed out that PPI not only have
chemosensitizing properties but also a direct anticancer activity, open-
ing a whole new field for clinical applications [56]. The same year,
Niikura showed that oral administration of a V-ATPase inhibitor to
SCID mice carrying orthotopic breast cancer xenografts resulted in
decreased tumor burden as well as in decreased bone metastasis [57].
Similarly, another group of investigators reported inhibition of local
growth and distal metastases in a murine model of melanoma where
mice were treated orally with a V-ATPase inhibitor [58]. In this study,
in order to assess tumor growth inhibition, 7 weeks-old C57BL/6 mice
were injected in the foot pad with tumorigenic melanoma cells and
assigned to two groups: placebo or treatment with the inhibitor of the
V-ATPase a3 by oral gavage for 10 days. Similarly, to assess the effects
on lung and bone metastases, two other groups were injected in the
tail vein (lung metastasis model) or intracardially (bone metastasis
model). In all three groups, treatment with the V-ATPase a3 inhibitor
resulted in decreased tumor burden. More recently, studies in rodents
evidenced the involvement of V-ATPases in tumor-induced immuno-
suppression and in tumor resistance to biological therapy with targeted
antibodies [23,59]. The study reported by Calcinotto and colleagues [59]
is of particular interest since it unraveled a state of anergy of tumor-
infiltrating lymphocytes induced by tumor acidosis, showing the possi-
bility to reverse this situation throughmanipulation of the tumor acidic
microenvironment. Thus, the possibility to modulate tumor acidity
could potentially increase the tumor response to conventional and
engineered drugs, as well as improve the recruitment of the immune
system of the host for a better tumor control.
the H+-rich tumor microenvironment), its transformation into the active molecule, ciclic
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1.5. Pilot studies

Comparative pathology by using spontaneous diseases in animals is
a validated approach to find out novel therapies for human tumors [60],
since their tumors have a behavior similar to those of humans and their
shorter lifespan allows for a rapid generation of data [61,62]. Two
studies have been conducted so far in companion animals with sponta-
neous neoplasms. The first one evaluated the capacity of high dose
lansoprazole to reverse chemoresistance in dogs and cats with known
refractory cancers orwhose tumors no longer responded to convention-
al chemotherapy [63]. Lansoprazole is a PPI that is administered as a
pro-drug and has a very high tropism towards acid environment
where it is activated. It is used at low dose (1 mg/kg) for the treatment
of gastric hyperacidity or at higher dose (2 mg/kg) for the therapy of
gastrinoma [63]. In this study the drug has been used off-label with a
three days loading dose followed by a maintenance to prevent a
rebound of acidity due to drug withdrawal, following the schedule of
5 mg/kg Monday through Wednesday and then 1 mg/kg Thursday
through Sunday. This strategy resulted in reversal of chemoresistance
in 23 out of 34 treated animal patients (67% response rate). In this
study, the most striking responses belonged to lymphoma patients
that greatly benefited from the new therapy (responses ranging from
3 to 12 months) and to two osteosarcoma patients that experienced a
partial response with dramatic decrease of the tumor-induced pain
and improvement of their Karnofski performance status. The therapy
was well tolerated with side effects limited to transient gastrointestinal
toxicity (occasional vomiting, diarrhea, flatulence) [63]. A confirmatory
study has been recently presented, showing the potentiation of metro-
nomic chemotherapy by patients' alkalization through the administra-
tion of pulse lansoprazole and the addition of a water alkalinizer to
the pets' drinking water in order to bring water pH to a value ap-
proaching 9 [64]. In this study, the cohort receiving alkalization showed
improved tumor response (both in terms of number and duration of
response) when compared to the group receiving metronomic chemo-
therapy alone. In particular, a dog with hepatic carcinoma and another
one with inflammatory mammary carcinoma experienced complete
remission lasting more than a year. Again, toxicity was limited and the
pets experienced durable responses with improved quality of life.
Patient alkalization will probably become a standard procedure in vet-
erinary oncology due to its low cost, increased tumor control and im-
proved quality of life.

In humans, treatment with PPIs as anticancer agents has only been
evaluated in one pilot study on osteosarcoma patients [65]. In this
cancer, 40% of patients treated with a neoadjuvant protocol develop
chemoresistance and relapse with metastatic disease. The neoadjuvant
protocol includes chemotherapy with methotrexate, cisplatin, doxoru-
bicin and ifosfamide administered before and after surgical removal of
the tumor. In this setting, the evaluation of necrotic rates in tumor
sections allows for early assessment of response rate, which is highly
correlated to prognosis [66]. Osteosarcoma patients with different
histotypes were pretreated with PPI Esomeprazole before neoadjuvant
treatment. Through mapping of the resected specimens, it appeared
that pretreatment with Esomeprazole improved the response to
chemotherapy only in the chondroblastic subtype that showed a
histological response rate of 61% versus 25% in the non-pretreated
group. On the contrary, no differences were seen in the osteoblastic or
in the telangiectatic and fibroblastic groups. This preliminary result
might indicate a direct correlation between the effectiveness of the
anti-acidic therapy based on the use of high dosage PPI and the presence
of a hypoxic environment in osteosarcoma. In fact, chondrocytic differ-
entiation is associated with low oxygen tension [67] and with a
metabolism largely, if not entirely, glycolytic, with little capacity for
oxidative phosphorylation [68]. Under this condition, targeting
V-ATPase with PPI inhibitors in chondrocyte-like cells would mean a
strong and a quick reduction in intracellular pH, ultimately leading to
cell death.
Please cite this article as: E.P. Spugnini, et al., Proton channels and exchange
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2. NHE1

The mechanisms by which the Na+/H+ exchanger (NHE1) is
thought to contribute to malignant transformation and cancerogenesis
are manifold [69–72]. While in healthy cells NHE1 is usually quiescent
and is activated primarily upon cytosolic acidification [70], it is hyperac-
tive in cancer cells even at resting intracellular pH (pHi), this eventually
leading to cytosolic alkalization. Increase in cytosolic pH is directly
correlated with pathological processes that induce malignant transfor-
mation [71–73], uncontrolled proliferation [74], augmented DNA syn-
thesis and the stability of spontaneously occurring mutations [75]. It
also induces the expression of oncogenes, enhances the activity of
growth factors [75], correlates with multiple drug resistance [76,77]
and promotes metastasis [78,79]. Accordingly, hyperactivity of NHE1
contributes to uncontrolled proliferation, motility and invasion of can-
cer cells [69,72,80], as best evidenced for breast cancer [81–83],melano-
ma [78,84,85] and non-small lung cancer [86]. Since an elevated NHE1
activity can be correlatedwith both an increase in cell pH and a decrease
in the extracellular pH of tumors, and such proton reversal is associated
with the origin, local growth, activation and further progression of the
metastatic process, NHE1 pharmaceutical inhibition by new and potent
NHE1 inhibitors (e.g. cariporide, 2-Aminophenoxazine-3-one (Phx-3),
compound 9 T) represents a potential and highly selective target in an-
ticancer therapy [69].

NHE1 activity also plays a role in chronic and acute myeloid leuke-
mia. The differentiation of K562 chronic myeloid leukemia cells is in-
duced by hypoxia, itself enhanced by NHE1 inhibition possibly due to
an upregulation of transcription factor C/EBP (CCAAT/enhancer-
binding protein) via the p38 MAPK signaling pathway [87,88]. In acute
myeloid leukemia (AML), tescalcin is upregulated and activates NHE1.
Consequently, untreated AML cells show a higher pHi compared to
healthy hematopoietic cells [89]. In this context, inhibition of NHE1 by
5-(N,N-hexamethylene) amiloride has been shown to suppress growth
and to induce selective apoptosis in various AML cell lines [74]. Usually,
AML cells develop resistance fairly quickly and efficiently, which has
been attributed to a high genetic variability of the fms-like tyrosine ki-
nase 3 (FLT3) gene [90]. NHE1 inhibition, however, sensitizes AML
cells to the tyrosine kinase inhibitor sorafenib [89,91]. Furthermore,
treatment of chronic myeloid leukemia with NHE1-modulating thera-
peutic approaches (including NHE1 up- and downstream signaling)
should be taken into consideration since a direct inhibition of NHE1
seems to be an option in the treatment of acute myeloid leukemia as
well as in different solid tumors.

Hormone-dependent NHE1 activity may play a role in prostate can-
cer. In prostate cancer lines DU145 and LNCaP, testosterone-albumine
conjugates activate membrane androgen receptors. This leads to a tran-
sient increase in NHE1 activity and to an elevated pHi via serum and
glucocorticoid-inducible and Rho-associated protein kinases [92]. The
fact that hormones can potentially modulate NHE1 activity via their re-
ceptors may lead to new approaches taking advantage of hormone re-
ceptors that are mainly – if not even specifically – expressed in tumor
cells and the tissue of origin. By therapeutically targeting the hormone
of interest, NHE1 activity could be curtailed. Interestingly, an indirect
alpha1-adrenergic receptor-mediated NHE1-dependent increase inma-
trix metalloproteinase (MMP) 9 activity and in cell invasion has been
shown in CCL39 Chinese hamster lung fibroblasts [93].

In MDA-MB-231 breast cancer cells, the transmembrane glycopro-
tein CD44 regulates metastatic potential by regulating NHE1 expres-
sion [94]: downregulation of CD44 reduces the presence and activity
of NHE1 and thus the cellular motility. Conversely, inhibition of NHE1
not only nearly abolishes CD44-stimulated breast cancer motility but
also correlates with a reduced expression of p-ERK1/2 and MMPs.
Based on their findings, Chang et al. [94] concluded that in MDA-MB-
231 cells CD44 regulates the expression of MMPs via NHE1 through
the ERK1/2 signaling pathway, and that simultaneously targeting
CD44 andNHE1may be a therapeutic strategy for treating breast cancer.
rs in cancer, Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/
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However, a recent study comparing cellular pH regulation inmulticellu-
lar epithelial organoids isolated fromhuman primary breast carcinomas
of European women revealed that, in these cells, the Na+,HCO3

−

cotransporter (NBCn1) rather than NHE1 manages pH homeostasis
[95]. A clear and unambiguous assignment of either an increased
NHE1 or an increased NBCn1 expression/activity to the malignancy of
breast cancer becomes even more delicate since NBCn1 expression is
downregulated in 64% percent of clinical tumor samples isolated from
human primary breast carcinomas of Asian descendants [96].

Serious challenges become evident when mice are treated with the
specific NHE1 inhibitor cariporide in order to control B16V melanoma
metastasis [78]. Indeed, pHe values as low as 6.8 neutralize the inhibito-
ry effect of cariporide on B16V cell migration. Besides this, B16V cells
show opposed migratory and invasive behaviors when seeded either
on basement membrane-like (more adhesion, less invasion) or
dermis-like (less adhesion, more invasion) matrixes [78]. These obser-
vations indicate that locally present pH values or matrix components
can counteract the effects of NHE1 inhibition and therefore would
even attract metastasizing tumor cells. NHE1 is an attractive and poten-
tial drug target as it is, in fact, upregulated and/or overexpressed in
cancer cells, and for these reasons on if its inhibitors, cariporide shows
some promises. Therefore it is necessary to find a way to use cariporide
at low concentrations and to deliver it selectively to the tumor tissue.
Cariporide, for instance, being one of the better studied specific and
powerful NHE1 inhibitors, could become a new, slightly toxic and effec-
tive anticancer agent in different humanmalignancies. For this reason, it
has been recently proposed as a new, powerful and selective NHE1
inhibitor with an important therapeutic potential in different solid
human malignancies [69,97–101].

Even though NHE1 inhibition can reduce adhesion, invasion and
metastasis, or even increase the sensitivity to efficient other chemother-
apeutic agents, its status as a potential target in cancer therapy remains
questionable. The efficiency of NHE1 inhibition will also depend on the
prevailing local pHe and on extracellular matrix composition, both of
which strongly modulate cell adhesion and MMP activity [78]. Never-
theless, NHE1, as one out of a number of pH-regulatingmembrane pro-
teins could be targeted by a broader drug cocktail of proton transport
inhibitors (PTI) simultaneously directed against several pH-regulators,
ion transporters and channels contributing to tumor malignancy, as
has been previously proposed [69,101–103]. Finally, targeting signaling
molecules that control NHE1 expression/activity may also become a
combined therapeutic option assumed that healthy tissues would be
less affected.
3. Carbonic anhydrases (CAs)

CAs are transmembrane Zn metalloenzymes that catalyze the
reversible hydration of carbon dioxide to carbonic acid and are involved
in respiration and acid–base equilibrium [104]. There are 14 known
members of this family, which are subdivided according to their
location: membrane-related, cytosolic, mitochondrial and secreted
[105]. CA-IX and CA-XII are the two major tumor-related CA isoforms
[106,107].

There is evidence that interfering with proteins related to proton
translocation leads to changes in both pHi and pHe in tumors, which
impair of tumor growth [106]. However, the main challenges of such
approach are related to the fact that many of the proteins are also
found in normal cells involved in physiological roles [108–111] and
their inhibition may cause serious/lethal side effects. There are at
least two exceptions for CAs: CA-IX and XII are predominantly
found in hypoxic tumors with restricted expression in normal tissues
in which their active site is closed and, therefore, the enzymes are
kept inactive [112]. Furthermore, the inhibition of these two CA iso-
forms with small molecules and/or antibodies has an anticancer
effect [113].
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3.1. CAs in human solid tumors

Tumormicroenvironment plays a key role in the viability and evolu-
tion of solid tumors. Hypoxia and tumor-cell proliferation determine
response to surgery, chemotherapy and radiotherapy [114]. Hypoxia
delays tumor cell proliferation maintaining cell superpopulations in a
proliferating situation under hypoxic conditions, and it is responsible
for treatment failure [115]. In addition, hypoxia-related genes, formed
by HIF-1 [116,117], related to the von Hippel–Lindau gene (vHL) during
oncogenesis [118] also controls several target genes that involve energy
metabolism (glucose and glycolytic enzyme transporters), angiogenesis
(VEGF) and CAs, mainly CA IX [108,119–121].

CA IX has been determined by immunohistochemical and western
blot studies and it has been thoroughly described in different malignan-
cies, including lung [122], cervical carcinoma [123], esophagus [124],
bladder [125], breast [126], and colorectal cancers [127]. For example,
in head and neck cancer (HNSCC), CA IX seems to be overexpressed
[128–132]. Furthermore, in advanced stage tumors these expression
levels are higher than in initial stage tumors. For this reason, early diag-
nosis of these patients is essential to improve survival expectations.
Additionally, survival in patients with moderate or negative expression
improves significantly in contrast with those patients with intense
CA-IX expression [133]. The same occurs in precancerous lesions,
where the use of CA IX as an immunohistochemical marker may be
useful as screening of dysplasia-free samples due to its high specificity
as a diagnostic test [134].

3.2. CA-IX and its relationship to resistance in cancer treatment

Resistance to chemotherapy and radiotherapy is themain reason for
treatment failure in patientswith solid tumors [27,135]. pHe is consider-
ably more acidic in a solid tumor than in normal tissue (“Cancer Proton
Reversal”). This increased acidity interferes with the absorption of
chemotherapy drugs, reducing their effect on tumors [136,137]. CAs
and other proton exchangers have been reported to be largely responsi-
ble for this acidic environment [101,138,139].

A clear association has been established between multidrug resis-
tance and Pgp (P-glycoprotein) expression in some tumors, but the
mechanism bywhich drug resistance occurs inmany other solid tumors
has not yet been fully elucidated [69,140,141]. The alteration of the pH
gradient between the extracellular environment and the cell cytoplasm
has been suggested as a possible mechanism of resistance to cytotoxic
drugs [142]. The increase in tumor interstitial acidity interferes with
the absorption of basic chemotherapy drugs, reducing their effect on tu-
mors [136,137]. This is the reason why pretreatment with PPIs and
other pH regulator molecules (proton transport inhibitors or PTIs) can
sensitize tumor cell lines to the effect of different chemotherapy
drugs, suggesting that tumor extracellular/intratumoral alkalinization
may be an extremely interesting additional target in future anticancer
treatments [142–145].

CA-IX expression takes placemainly in tumorswith low vasculariza-
tion and necrotic areas and is related to a poor overall response [146,
147]. The lack of microvessels in well-differentiated areas related to
hypoxia and positive for CA-IX limits the use of chemotherapeutic
drugs and induces resistance to therapy, confirming the hypothesis
that hypoxia promotes the creation of resistant cell subpopulations as
a CA IX-mediated drug resistance [148,149]. However, its role in
radioresistance remains to be further elucidated [150,151].

3.3. Interfering CAs in tumor cells

Through a catalytic reaction CAs contribute significantly to the extra-
cellular acidification of solid tumors (in addition to lactic acid), for
hence their inhibition is bound to revert this phenomenon [152]. It
has been known for some time that many classes of aromatic/heterocy-
clic sulfonamides and sulfamates show good affinity for CA I-VII and
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CAXII-XV [105,153], but generally they do not possess specificity for the
inhibition of the tumor-associated isoform. During the last years several
approaches that specifically target the tumor-associated isoforms CA IX
and XII were discovered (which are extracellular proteins, with their
active site outside the cell), namely:

(i) positively or negatively-charged compounds: they cannot cross
plasma membranes and inhibit selectively only extracellular
CAs, like CA IX and XII [108]

(ii) fluorescent sulfonamides: used for imaging purposes [112,152]
(iii) sugar-containing sulfonamides/sulfamates/sulfamides: due to

their highly hydrophilic character do not easily cross cell mem-
branes and thus possess an enhanced affinity for extracellular
sites [154]

(iv) nanoparticles coated with CAs [155]
(v) novel chemotypes: different than the sulfonamide compounds,

such as coumarins, thiocoumarins, polyamines, phenols, etc.
[156]

(vi) monoclonal antibodies (mAbs): represent another avenue for
the selective targeting of CA IX and CA XII [157,158]

(vii) M75 is a highly specific anti-CAIX mAb targeting the PG domain
of CA IX, discovered by Pastorekova's group [113].

(viii) Interestingly, CA IX has also successfully been used as an antigen
for the generation of monoclonal antibodies which have been
subsequently radiolabeled for radioimmunotherapy applications
[159].

All these data demonstrate that tumor-associated CAs are indeed
almost ideal targets for designing novel and innovative anticancer
drugs which interfere with tumor microenvironmental acidification.

4. Monocarboxylate transporters (MCTs)

Accelerated glycolysis is a main metabolic pathway for ATP genera-
tion and biosynthesis in hypoxic (anaerobic glycolysis) and proliferating
(aerobic glycolysis) tumor cells characterized by lowOXPHOS activities.
It is associated to the conversion of lactate to pyruvate by lactate dehy-
drogenases (LDH, primarily LDH-5) followed by the export of lactate to-
gether with a proton, a process facilitated by monocarboxylate
transporters (MCTs) expressed at the plasmamembrane. The LDH-5 re-
action (Fig. 2) has two main functions that contribute to maintain gly-
colysis at high rates. First, it ensures the oxidation of NADH to NAD+,
which is thereby made available to fuel glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) upstream in the glycolytic cascade, ensuring
energy production maintenance. Second, it buffers the cytosolic pH of
glycolytic cells by incorporating the protons formed upstream in glycol-
ysis into lactate anions, so that the production of 2 molecules of lactate
from 1 molecule of glucose is not associated to a net production of pro-
tons by glycolysis [160]. A neutral to slightly alkaline intracellular pH
supports glycolysis as the activity of phosphofructokinase-1 (PFK1)
and LDH-5 itself increasewith the pH [161,162]. Rather than directly re-
leased, acidity produced by glycolysis is incorporated into ATP and re-
leased during ATP hydrolysis, which occurs at a high rate in glycolytic
tumor cells. Additional sources of acidity come from biosynthetic path-
ways (ea., TCA cycle in the cataplerotic mode), 6-phosphogluconate de-
carboxylation in the oxidative arm of the pentose phosphate pathway,
Fig. 2. The LDH-5 reaction. The reduction of pyruvate to lactate at the end of the glycolytic
pathway serves to replenish the NAD+ pool needed to maintain glycolysis at high rates,
and buffers cytosolic pH by incorporating protons into the molecule of lactate.
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and amino acid metabolism producing NH4
+ and decarboxylation reac-

tions (ea., malic enzyme reaction) [163,164].
According to mass action law, lactate removal would optimize the

LDH-5 reaction. This activity depends on MCTs, a family of 14 members
among which MCT1 to MCT4 are passive symporters that convey the
transport of monocarboxylates, including lactate, together with a pro-
ton [165,166]. The transporters consist of 12 transmembrane domains
with intracellular C- and N-terminals [167]. Their activity is primarily
driven by the gradient of their substrate monocarboxylates across
membranes,which differentiates them fromother passive proton trans-
porters (CAs and NHEs) that essentially depend on a steep gradient of
protons [168]. With low affinity for lactate (Km ≈ 22 mM) but a high
turnover rate, the lactate transporter MCT4 is particularly well adapted
to facilitate lactate export through the plasma membrane [169,170]
(Fig. 3). As a target gene product of transcription factor hypoxia-
inducible factor-1 (HIF-1), its expression increases with hypoxia [171],
thereby linking glycolytic flux increase and transporter abundance/ac-
tivity. Some tumor cells also use MCT1 (Km lactate ≈ 2.5–5 mM) for lac-
tate efflux [165], whereas high affinity MCT2 (Km lactate ≈ 1 mM) has
been found to be expressed in brain, prostate and colon cancers
[172–174] where its role still remains elusive. To date, MCT3 has no as-
cribed a role in tumors. Collectively, MCT1 andMCT4 are responsible for
extracellular lactic acid accumulation in cancer, raising average lactate
levels from 1.8–2mM [175] in normal tissues to 6–15mM in clinical tu-
mors, with peak levels as high as 40 mM [176]. The regulation of their
expression and activities has been reviewed recently [165,166,177].

Once exported, lactic acid readily is dissociated into lactate and pro-
tons. The contribution of extracellular acidity to tumor progression has
been well documented, in spite that the lactate anion has for a long
Fig. 3.MCTs convey lactate exchanges in tumors. Themodel represents lactate exchanges
in ametabolic symbiosis between oxidative and glycolytic tumor cells and in themetabol-
ic exploitation of stromal cells by oxidative tumor cells. Hypoxic/glycolytic tumor cells
provide lactate to oxidative tumor cells, and therefore receive the glucose spared by the
latter. Stromal cells are metabolically exploited by oxidative tumor cells that block their
TCA cycle with H2O2, forcing them to supply lactate as a result of glycolytic compensation.
At the core of lactate exchanges in cancer, oxidative tumor cells use lactate as an oxidative
fuel preferred to glucose. Lactate is oxidized into pyruvate (lactate dehydrogenase [LDH]-1
reaction), and pyruvate fuels the TCA cycle. Monocarboxylate transporters MCT4 and
MCT1 gate lactate export and uptake, respectively. MCT1 inhibitors, targeting oxygenated
tumor cells close to blood vessels, can be used therapeutically to block lactate exchanges.
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time been considered as a biologically inactive byproduct of glycolysis.
In 2008, however, Sonveaux et al. [111] reported that oxidative tumor
cells can use lactate as an oxidative fuel in a two-step process involving
MCT1-dependent lactate uptake and its oxidation to pyruvate by LDH-1
(Fig. 3). They further observed a metabolic preference of oxidative
tumor cells for lactate compared to glucose, which can be explained
by a competition between LDH-1 and GAPDH for NAD+ [178] and/or
by an allosteric inhibition of glycolytic enzymes hexokinase and phos-
phofructokinase by lactate [179]. These findings supported the theory
of a metabolic symbiosis in tumors [111,180] where the oxidative pref-
erence of oxygenated tumor cells for lactate would improve glucose
delivery to hypoxic/glycolytic tumor cells (Fig. 3). In turn, glycolytic
tumor cells would generate a lactate gradient fulfilling the respiration
needs of oxidative ones. Sonveaux's hypothesis is supported by the ob-
servation of metabolic cooperativeness based on lactate exchanges in
breast cancer [181,182], melanoma [183] and pancreatic cancer [184].
In an extension of the symbiosis theory, the group of Michael Lisanti
[185,186] reported that oxidative tumor cells can secrete H2O2 to
convert oxidative stromal cells into glycolytic suppliers of lactate and
ketone bodies (Fig. 4).

If MCT1 gates the oxidative use of lactate (and ketone bodies) in
cancer, it also controls lactate signaling and tumor angiogenesis. Lu
et al. [187,188] were the first to report that lactate can act as a hypoxia
mimetic by activating HIF-1 independently of hypoxia. The pathway,
which was reported to exist in oxidative tumor cells and in endothelial
cells [189,190], involves lactate oxidation into pyruvate, a compe-
tition between pyruvate and 2-oxoglutarate to inactivate HIF-1
prolylhydroxylases (PHDs) and, consequently, the stabilization of HIF-1
subunit α and HIF-1 activation. Consequently, lactate stimulates
pro-angiogenic vascular endothelial growth factor (VEGF) signaling
by increasing VEGF production by tumor cells and the expression
of VEGF-receptor 2 in endothelial cells. It also triggers autocrine
pro-angiogenic signaling in endothelial cells through basic fibroblast
growth factor (bFGF, indirectly controlled by HIF-1) [189] and
interleukin-8 (IL-8, a NF-κB target gene product) [191].

The key roles exerted by MCT1 in controlling lactate exchanges for
themetabolic use of lactate and for its use as a signaling agent prompted
Fig. 4.MCT1 gates pro-angiogenic lactate signaling in cancer. Lactate produced by hypoxic/glyco
way, it enters into oxidative tumor cells and endothelial cells using MCT1-dependent transport
vation in tumor and endothelial cells, and NF-κB in endothelial cells. Lactate thereby promotes
lactate signaling essentially depends on MCT1-facilitated uptake, tumor angiogenesis can be in
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thedevelopment ofMCT1 inhibitors. Thehistorical inhibitorα-cyano-4-
hydroxycinnamate (CHC) [192] potently inhibited metabolic symbiosis
and lactate-induced angiogenesis [111,189–191] but lacks MCT1
specificity. AstraZeneca with Cancer Research UK launched a clinical
trial where AZD-3965, a dual MCT1/MCT2 inhibitor having
demonstrated sufficient clinical safety, is evaluated as an anticancer
agent (NCT01791595). However, this agent does not specifically target
MCT1-dependent lactate uptake, and dose-limiting toxicities could
arise in tissues expressing MCT2 (brain, liver, kidney) or in cells using
MCT1 for physiological functions (ea., red blood cells and immune cell
using MCT1 to export lactate produced glycolytically). MCT1−/− mice
die embryonically [193]. As an alternative to AZD-3965, Feron et al.
[194,195] recently developed a first-in-class family of MCT inhibitors
that blocks lactate influx but not efflux. Lead compound 7ACC2, a
7-aminocarboxycoumarin derivative devoid of any anticoagulant activ-
ity, is a dual MCT1/MCT4 inhibitor of lactate uptake (IC50 = 11 nM on
14C-lactate flux inhibition) that does not inhibit lactate export. The
future development of MCT1 inhibitors will require a better under-
standing of the roles of the different transporters in physiology and in
cancer, and of its regulation by typical parameters of the tumor
microenvironment and during tumor treatment. Finally, the recent dis-
covery that MCT1 is involved in tumor cell migration [196] together
with the fact the it is commonly upregulated in secondary versus prima-
ry tumors [197] could enlarge the therapeutic potential of this class of
drugs to metastatic prevention and/or to the treatment of established
metastases [198].

5. Conclusions

5.1. The present and future prospects of a new and integral paradigm in
human cancer therapeutics

Cell acid–base balance, controlled by PTIs and PPIs is recognized to
be the main parameter to define cellular homeostasis, the life of cells
being possible only within a very narrow range of pH of less than one
unit. In that context, the pH of normal and cancer cells has been repeat-
edly shown to deviate towards opposite ends of a metabolic spectrum.
lytic tumor cells diffuses along its concentration gradient towards blood vessels. Along the
. There, it competes with 2-oxoglutarate to inhibit PHDs, supporting normoxic HIF-1 acti-
paracrine VEGF and autocrine bFGF and IL-8 signaling, hence tumor angiogenesis. Because
hibited with MCT1 inhibitors.
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This energetic abnormality represents the largest possible difference so
far found between normal cellular physiology and cancer pathophysiol-
ogy. At the same time, targeting the hydrogen-related dynamics of ma-
lignancy has become a new approach to tackle cancer that is helping to
reach a better understanding of several, until now disparaged areas of
cancer research both at basic and clinical levels. This unifying thermody-
namic view of cancer metabolism has allowed to integrate under a
unitarian perspective the hydrogen-related dynamics of malignancy
(pH centric paradigm). This allows researchers belonging to different
disciplines to embrace processes ranging from etiopathogenesis to cell
transformation and metabolism, growth and local invasion, neovascu-
larization, drug resistance and the activation and progression of the
metastatic process [72,101].

The utilization of different PTIs and PPIs in cancer therapeutics was
initially suggested as a novel approach for the pH-related treatment of
malignant tumors because of its potential as a more selective and less
toxic approach compared to conventional chemotherapy. From a thera-
peutic perspective, the primary aim of this originally pH-based ap-
proach was to manipulate the selective forces controlling the
deregulated pH dynamics of all cancer cells and tissues in order to re-
gress tumor growth, control local invasion anddeactivate themetastatic
potential of malignant tumors within this new and integral perspective
and paradigm shift based upon the dynamics of the hydrogen ion [H+]
in cancer pathophysiology and treatment. This approach would have
low toxicity and could be particularly efficient in combinationwith che-
motherapy, becausemany chemotherapeutic drugs are weak bases that
would benefit from a raise in extracellular pH. It has a real possibility to
become a successful strategy for human cancers in general.

Any attempt to therapeutically induce a selective intracellular
acidification using PTIs and at the same time alkalinizing interstitial
tumor pH with PPIs in all cancer cells and tissues would secondarily in-
hibit the metastatic process and counteract drug resistance, thus
representing a rational and firmly based approach for cancer treatment
in all stages of development. Further, it has the potential of being selec-
tively exploited in the treatment of many different human malignant
solid tumors and leukemias.

As a final example, the new and potent NHE1 inhibitors of the
amiloride series, like cariporide, as well as powerful and selective NHE1
inhibitors of the non-amiloride series, like Phx-3 and compound 9 t,
have the potential of being highly promising, minimally toxic and truly
effective anticancer agents in a wide array of malignant tumors and leu-
kemias [65,101]. However, translation to the oncology clinic has yet to be
realized because, unfortunately, the utilization of this drug in cancer
treatment has not been explored [73,101]. The only non-amiloride
based compounds with NHE1 inhibitory activity that have undergone
clinical trials are cariporide and eniporide, and those trials were not in
the field of cancer but in a cardiological setting and for ischaemic–reper-
fusion injury. Despite the cardioprotective value of cariporide in reducing
myocardial infarcts in both the EXPEDITION and in the earlier GUARDIAN
trials, use of the drugwas associated in the EXPEDITION studywith a sig-
nificant increase in the rate of mortality (from 1.5% to 2.2% at day 5) due
to an increase in cerebrovascular events [199–201].

The appearance of these adverse effects in the last trial can probably
be ascribed to the higher cumulating dose of cariporide administered in
the EXPEDITION trial with respect to the GUARDIAN trial [202]. Clearly,
a clinically reasonable initial approach in an oncology setting would be
to minimize the systemic dose of the drug in order to dissociate the ad-
verse and probably off-target effects from beneficial effects. Interesting-
ly, rats having a lifelong treatment with cariporide had a greatly
extended lifespan and thiswas interpreted as being due to a reduced oc-
currence of cancer [202,203]. Besides, cariporide is orally bioavailable
and by this route of administration has been used in thousands of pa-
tients in a cardiological setting but never to date in an oncological one
and as anticancer drug [204–206]. Sanofi-Aventis, the patent holder
(CARIPORIDE PATENT WO2004007480, SANOFI-AVENTIS, 2005),
surpisingly writes in its patent on cariporide effects: “[...] there is also
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surprisingly a prolongation of life to an extent which has to date been
achievable by no other group of medicaments or by any natural prod-
ucts. This is a unique effect of NHE inhibitors like cariporide”.
Furthermore, other patent holders for selective and potent NHE1 inhib-
itors like the 3-methyl-4-flouro analog of 5-aryl-4(4-(5-methyl-14-
imidazol-4-yl) piperidin-1-yl)pyrimidine (Compound 9t) should also
release and promote this drug for cancer research, more taking into ac-
count that Compound 9t is one of the most selective NHE-1 inhibitors
ever known. It is 1400-fold more selective and 500-fold more powerful
in inhibitingNHE1 than cariporide. Besides, it is orally available, has low
side-effects in mice and may possess a significantly improved safety
profile over other NHE1 inhibitors (BRISTOL-MYERS SQUIB PATENT
WO 01 27107 A2, PCT/US00/27, 2001; US 6887870 B1; EP 1224183)
[207]. Finally, Phx-3 (APO) (Japanese Research group patents
US2010324285A1and EP2098228A1) is another promising PTI and NHE
inhibitor and anticancer drug. All these patent holders should review
their efforts in this regard, all in order to make these drugs immediately
available for oncology research to basic and clinical cancer researchers,
so facilitating preclinical and clinical therapeutic attempts, both as anti-
cancer drugs of their own and as adjuvants to overcome MDR (for a
more detailed review of this subject, see Refs. [65,69,101,208]).

The new strategy against cancer based on targeting the main actors
of tumor pH regulation is not a real molecular targeting approach but
can rather be viewed as a targeting of an aberrant cancer phenotype
that hampers the body reaction against cancer. Cancers live in this
hostile condition thanks to proton exchangers that actually represent
very efficient mechanisms of detoxification. Counteracting proton
exchangers activity deprives cancer cells of their detoxification
framework inducing a quick and fatale cancer cell death [209].
However, low extracellular pH is a key determinant for nanovesicles
release by cancer cells that are involved in paracrine and systemic
tumor spreading [210] and resistance to cytotoxic drugs [211]. It is
therefore conceivable that inhibiting major tumor pH regulators may
profoundly impair tumor natural history, at least contributing to
control cancer growth and progression. It is mandatory that, to better
understand the clinical application of the use of proton exchangers
inhibitors, clinical trials should be promoted and supported by public
funds, in order to contribute to refine the current paradigm where
chemotherapy, surgery and radiotherapy occupy a central position.

Finally, we think that it is urgently needed that the new and potent
proton transport inhibitors dealt with in this contribution, which repre-
sent a potential, highly selective and new avenue in anticancer therapy,
should be immediately made available by patent holders in order to fa-
cilitate progress in this new area of modern cancer research instead of
keep on hindering it any longer.
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